Economic Analysis of Water Supply and Water Quality Benefits

Each Proposal Must Include

- Cost details for the entire Proposal
- Description of the Proposal's water supply and water quality benefits by reference to a future without the Proposal
- Quantified estimates of physical benefits, if possible
- Economic benefits analysis, if possible

Required Economic Assumptions

- Must evaluate as a stand-alone proposal
- Include all associated costs
- Not just grant-funded portion
- Benefit-Cost Assumptions
 - Use 50-year analysis period, unless justification provided.
 - Use 6 percent to discount future costs, benefits
 - Show all costs and benefits in year 2006 dollars
 - Real costs or benefits can trend over time
 - Planning horizon analysis if appropriate

Why Use Planning Horizon Annual Analysis?

- Tables are provided for Planning Horizon Annual Analysis
- Average annual values could be used if:
 - Over planning horizon, expected benefits are fairly uniform or random variation due to hydrology (no trend), AND
 - O&M and replacement costs are fairly uniform or random, AND
 - All capital costs incurred up front (not staged)
 - Then, for a 50-year project, NPV of annual benefits and O&M costs is 15.76 times the annual value
- Planning horizon annual analysis is appropriate if capital costs are staged, or if there is a significant trend in benefits or O&M costs over project life

Example of a Project Needing Planning Horizon Annual Analysis

Expected yield is	So benefits are	Capital cost does	O&M costs are			
delayed or shows a	delayed or show a	not all occur in year	delayed or show a			
trend over time	trend	zero	trend			

Benefit= \$200 x										
Ye	ar/row	AF Yield	Yield	Capital Cost	O&M Cost					
	0	0 (1)	\$0	\$100,000	\$0					
	1	0	\$0	\$0	\$0					
	2	0	\$0	\$0	\$0					
	3	0	\$0	\$0	\$0					
	4	2	\$400	\$150,000	\$4					
	5	10	\$2,000	\$0	\$20					
	6	20	\$4,000	\$0	\$40					
	7	40	\$8,000	\$0	\$80					
	etc	etc	etc	etc	etc					
	49	100	\$20,000	\$ O	\$200					
	50	100	\$20,000	\$0	\$200					

Costs to include

- All costs must be included regardless of who pays
- All capital, O&M, and future replacement
- Economic costs include opportunity costs of any resources (land, volunteer labor) committed to the project even if they were purchased in the past
- Opportunity cost is the market value of the resource now

Benefits and Cost Savings

- Economic benefits are 1) the value of water quality or quantity improvements or 2) cost savings, both relative to without-proposal
- Count 1) when
 - Without proposal, no other project would be implemented
 - Benefits are achieved only with the proposal
 - The effect of the proposal is to achieve a physical quality or supply benefit that would not otherwise be obtained
- Count 2) cost savings when:
 - Without proposal, some other project would be implemented instead
 - Benefits are achieved with either proposal or project
 - The effect of the proposal is to avoid a cost

Benefits Hints

- For water supply, usually cost savings. If there is no supply alternative, might claim reduced shortage cost
- Economic impacts such as jobs or income created in construction are not benefits
- Do not double count
- Count only one type of benefit or cost savings for each unit of water supply produced
- Can count different types for different conditions
 - Hydrologic conditions: wet year, reduce purchases, dry year, reduce shortage
 - Planning horizon: short run, improve quality, long-run, avoid a future project

Documenting Cost Savings and Benefits

- Describe what would happen (especially costs) in the future without the proposal
- Describe how proposal will be operated to obtain benefits claimed
- Document benefits thoroughly, including future conditions without and with the proposal
 - Past supply planning documents, Board minutes, land use plans
 - Make any past documentation of physical or economic benefits analysis available

Benefits/Cost Savings Tables for Planning Horizon Analysis

- Unit benefit (Table 12)
 - Water sales revenues, only if real supply increase,
 - Avoided water supply purchases, or
 - Benefit or cost savings per unit salinity
- Cost of future projects avoided (Table 13)
 - water supply project
 - water quality project
- Other (Table 14)
 - secondary studies

NOTE: Benefit estimates must realistically reflect what the agency would actually do in absence of proposal

Water Quality Benefits

Link Project Hydrology to Receiving Water Body

- Identify Water Quality Standards
 - http://www.waterboards.ca.gov/
 - Regional Board
 - Water Quality Control Plan (Basin Plan)
 - Basin Plan Documents
 - Section 3. Water Quality Objectives (standards)

SPECIFIC WATER QUALITY OBJECTIVES FOR NORTH

	Condu (micro	cific ictance omhos)	Disse Sol	otal olved lids	Dissolved Oxygen				
<u>Waterbody</u> ¹	90% Upper <u>Limit³</u>	7°F 50% Upper <u>Limit²</u>	<u>(m</u> 90% Upper <u>Limit³</u>	g/l) 50% Upper <u>Limit²</u>	Min	90% 50% Lower Lower Limit ³ Limit ²			
Lost River HA									
Clear Lake Reservoir & Upper Lost River	300	200			5.0	8.0			
Lower Lost River	1000	700			5.0	-			
Other Streams	250	150			7.0	8.0			
Tule Lake	1300	900			5.0	_			
Lower Klamath Lake	1150	850			5.0	-			
Groundwaters 4	1100	500			_	-			

Estimate

- Change in Flow
- Reduction in Concentration
- Reduction In Loading
 - Units Per Time Period (X tons of sediment per day)

Water Quality Economic Quantification

- Basin Plan Beneficial Uses (Section 2)
 - State Water Resources Control Board Uniform List of Beneficial Uses (1996)
- Water Supply
 - MUN Municipal and Domestic Supply
 - AGR Agricultural Supply
 - IND Industrial Service Supply
 - PRO Industrial Process Supply
 - GWR Groundwater Recharge
 - FRSH Freshwater Replenishment
 - NAV Navigation
 - POW Hydropower Generation

- Recreation
 - REC-1 Water Contact Recreation
 - REC-2 Non-Contact Water Recreation
- Habitat
 - Comm Commercial and Sport Fishing
 - WARM Warm Freshwater Habitat
 - COLD Cold Freshwater Habitat
 - ASBS Preservation of Areas of Special Biological Significance
 - SAL Inland Saline Water Habitat
 - WILD Wildlife Habitat
 - RARE Rare, Threatened, or Endangered Species
 - MAR Marine Habitat
 - MIGR Migration of Aquatic Organisms
 - SPWN Spawning, Reproduction, and/or Early Developme
 - SHELL Shellfish Harvesting
 - EST Estuarine Habitat
 - AQUA Aquaculture

North Coast Region Beneficial Use Designations

- Wetland
 - WET Wetland Habitat
 - WQE Water Quality Enhancement
 - FLD Flood Peak Attenuation/ Flood Water Storage
- Traditional and Cultural Uses of Water
 - CUL Native American Culture
 - FISH Subsistence Fishing

TABLE 2-1: BENEFICIAL USES OF WATERS OF

	HYDROLOGIC UNIT/AREA/ SUBUNIT/DRAINAGE FEATURE										
HU/HA/ HSA		NOM	AGR	QNI	PRO	GWR	FRSH	NAV	POW	REC1	REC2
101.00	Winchuck River Hydrologic Unit										
	Winchuck River	E	Е	Е	Р		Ε	E	Р	Е	Е
102.00	Rogue River Hydrologic Unit										
102.20	Ilinois River Hydrologic Area	Е	Е	Ε	P		Е	Е	Ε	Е	Е
102.30	Applegate River Hydrologic Area	E	Ε	Ε	Ш		Ε	E	Р	Е	Е
103.00	Smith River Hydrologic Unit										
103.10	Lower Smith River Hydrologic Area										
103.11	Smith River Plain Hydrologic Subarea	Е	E	Ε	Ĥ		Ε	E		Е	Е
	Lake Talawa	Р					Е	Е		Е	Е
	Lake Earl	E	E	Е			Е	Е		Е	Ε
	Crescent City Harbor						Е	E		E	Е
	Rowdy Creek Hydrologic Subarea	E	Е	Е	Р		Е	E	Р	E	E
	Mill Creek Hydrologic Subarea	E	Е	Е	Р		Е	E	Р	E	E
-	South Fork Smith River Hydrologic Area	E	Е	Е	Р		Е	E	Е	E	Е
	Middle Fork Cosith Diver Hydrologie Area	l E	ΙE	E	Р		Е	E	E	Е	E
	Middle Fork Smith River Hydrologic Area				-						
103.40	North Fork Smith River Hydrologic Area Wilson Creek Hydrologic Area	E	E	E	P P		E	E	E	E	E

Non-Market Values (Habitat, Recreation, etc.)

- National Ocean Economics Program
 - Non-Market Valuation Studies Database
 - http://noep.mbari.org/nonmarket/NMsearch.asp
- Beneficial Use Value Calculator Database (BUVC)
 - Over 3,000 Non-Market Values
 - Sorted by Beneficial Use

Scoring

- The minimum score is 1 point.
- The remaining 4 points scored based on two criteria:
 - NET economic benefits
 - Quality of the economic analysis and documentation
 - Unsubstantiated, deceptive, poor quality, or poorly documented economic analysis can result in the score being reduced.
 - Exceptional documentation can increase score.

Other Expected Benefits

- Types could include:
 - Ecosystem Restoration
 - Flood Control
 - Recreation and Public Access
 - Power Cost Savings or Power Production
 - Other Environmental Benefits
- Same economic principles apply